Friday, June 19, 2009

Math helping physics in solving problems


Mathematical physics is the scientific discipline concerned with the interface of mathematics and physics. There is no real consensus about what does or does not constitute mathematical physics. A very typical definition is the one given by the Journal of Mathematical Physics: "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories."[1] However, this definition does not cover the situation where results from physics are used to help prove facts in abstract mathematics which themselves have nothing particular to do with physics. This phenomenon has become increasingly important, with developments from string theory research breaking new ground in mathematics. Eric Zaslow coined the phrase physmatics to describe these developments[2], although other people would consider them as part of mathematical physics proper.
Important fields of research in mathematical physics include: functional analysis/quantum physics, geometry/general relativity and combinatorics/probability theory/statistical physics. More recently, string theory has managed to make contact with many major branches of mathematics including algebraic geometry, topology, and complex geometry.

No comments:

Post a Comment